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Abstract—Laminar natural convection over a sharp-edged horizontal bar situated in an infinite fluid
medium has been investigated numerically and experimentally. Finite-difference solutions to the two-
dimensional Navier-Stokes and energy equations were obtained with a fixed Prandtl number of 0.7 for the
two configurations: a flat plate of finite thickness and a square bar. The difficuity associated with the
complex physical flow domain was overcome by using the body-fitted coordinates. In the numerical study
we found no indication of flow separation for the flat plate, in the range of Rayleigh number 10° < Ra < 10°,
For the square bar, however, the boundary layer separated easily at the upper sharp edges for Ra > 5x 10%
and well-defined twin vortices were identified above the upper horizontal surface. A Mach—Zehnder
interferometric study was concurrently carried out in air for the square bar to determine the local tem-
perature and Nusselt number distributions in the Rayleigh number range 1.95x 10* < Ra < 1.53 x 10°,
Comparison of the two results, the numerical and the experimental, offered good agreement.

INTRODUCTION

LAMINAR natural convection about heated bodies
has been investigated extensively. Most of the earlier
studies are, in general, limited to natural convection
without flow separation. The flow separated from
a bluff body is of inherent interest in fluid mechanics
since the wall heat flux or the wall pressure can be
significantly influenced by its existence. In forced convec-
tion, flow separation is attributed to the reaction
of the viscous boundary layer to a pressure field
established in an adjacent outer inviscid flow region.
In contrast, the flow separation mechanism in the
natural convection is complicated because the buoy-
ancy force which is not necessarily aligned with the
body surface operates as a body force in the entire
boundary layer.

Flow separation in natural convection seems to
have been very elusive and did not receive due atten-
tion in the literature. Bromhan and Mayhew [1]
reported from smoke tests the observation of a small
separated flow region at the base of a plume rising
from a heated sphere. Schenk and Schenkels [2]
carried out an experimental study with an ice sphere
melting in water. They observed that the downward
boundary layer, generated by a prevailing positive
thermal expansion coefficient above 4°C, separates
ahead of the bottom stagnation point.

For two-dimensional natural convection, Pera and
Gebhart [3] concluded by experimental observation
of the wake formation over a circular cylinder in water
that the flow separation did not exist in the natural
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convective flow adjacent to the smooth body surface.
Another experimental study includes one for a hori-
zontal semi-infinite flat plate : the interferometry per-
formed by Rottem and Claassen {4], semi-focusing
colour Schlieren photography, revealed that the
boundary layer on the upper surface of the plate broke
down into a large eddy instability at some distance
from the leading edge. Pera and Gebhart [5, 6] and
Gebhart {7, 8] also confirmed by smoke visualization
the existence of such a laminar boundary layer near
the leading edge above a heated horizontal surface.
The possibility of flow separation in the natural
convective flow about a heated square bar was first
reported in ref. [9]. From the peculiar temperature
inversion phenomenon, first fortuitously found in the
Mach~Zehnder interferograms in the Grashof num-
ber range 2.77 x 10-2.19 x 10°, the existence of twin
vortices above the upper horizontal surface of the
square bar was conjectured. In an earlier related paper
[10], however, where the finite element method and
the smoke visualization of the streamlines were used
to study the natural convection between a concentric
square bar and an outer horizontal circular cylinder,
this phenomenon was absent due to the relatively low
Rayleigh number range of investigation, Ra < 10°.
For the same problem with Rayleigh numbers greater
than 10% Cho [11] suggested with experimental evi-
dence that flow separates at the sharp upper edges
of the square bar. Recently, Miyamoto er al. [12]
reported on the heat transfer from rectangular prisms,
the aspect ratio of which is varied from a vertical plate
to a horizontal one. Their analysis using the finite
difference method, which is limited to a relatively low
Rayleigh number 1.94 x 10, suggested the existence
of a separated bubble above the upper surface of the
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g gravitational acceleration

Gr  Grashof number, gBL*(T, — T,)/v’

h local heat transfer coefficient

k thermal conductivity

L side length of a square bar or length of a
flat plate

L operator, L/ F = [(f.F),— (f,F):1}J

M operator, Mf = yf, —fif. on y = const.;
Mf = af:—Bf, on & = const.

n coordinate in the normal direction

Nu  local Nusselt number, AL/k

P,Q coordinate control functions

Pr Prandtl number, v/&

Ra  Rayleigh number, gBLYT,—T,)/va

t dimensionless time, 7/(L%/a)

T temperature

velocity components along x, y direction,

(@, 5)/(3/L)

x.y  dimensionless Cartesian coordinates,
(%, p)/L.

NOMENCLATURE

Greek symbols

& thermal diffusivity
B thermal expansion coefficient
& convergence criterion
< dimensionless vorticity, {;(%/L")
0 angle
v kinematic viscosity
£.n coordinates in the transformed planc
o demarcation angle for the outflow
boundary conditions
¢ dimensionless temperature,
(T—=T\)/(T,—Ty)
W dimensionless stream function, /3.
Subscripts
0 reference value
w wall surface.
Superscript

dimensional quantities.

rectangular bar. More recently, Chang and Choi [13]
presented a brief account of the flow separation from
the upper edges of a hot square bar through a numeri-
cal analysis.

In this paper, two flow models were chosen : a hori-
zontal flat plate of finite thickness and a horizontal
square bar, both isothermal and infinitely long. The
former can be regarded as an extreme case of a rec-
tangular bar, where we took for convenience the
aspect ratio of the cross-section (the thickness divided
by the width) as 0.01. Although the flow geometries
look unusual, they have practical industrial appli-
cations in the cooling of integrated circuit chips and
other components. The study also has fundamental
importance in understanding how a buoyant bound-
ary layer separates past sharp edges and how the heat
transfer characteristics are accordingly affected.

NUMERICAL STUDY

Mathematical formulation

One of the two physical models is pictured sche-
matically in Fig. 1. A horizontal square bar of dimen-
sion Lx L is situated in an infinite air medium of
temperature T,. The bar is kept at a higher uniform
temperature T,,. Symmetry with respect to the vertical
mid-plane is assumed. If the symmetry cannot be
assured for some reason, a full flow domain should
be taken into account rather than half. In the present
study, this symmetry has been carefully monitored
through Mach-Zehnder interferometry. The broken
line in Fig. 1 represents the demarcation line across
which the inflow and the outflow boundary conditions

outflow region
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F1G. 1. Schematic diagram of the flow over a square bar.

are differentiated on the far boundary.

We used the Boussinesq approximation for two-
dimensional steady laminar natural convective flow.
The non-dimensional form of the governing equations
is, in Cartesian coordinates

Co4+ul +0l, = PrV{+RaPro, %)
(= -V @)
¢, +up, +vd, =V (3
where
u=v, v=—y,.
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Ellipticity of the above governing differential equa-
tions demands boundary conditions on the entire
boundary enclosing the flow field, while their para-
bolicity requires the description of the initial
condition. The inner boundaries are made of the body
wall and the lines of symmetry where we specify

lp:o! Cz_l//nm ¢=1
W ={=¢,=0  ontheline of symmetry. (4)

Natural convection about a horizontal circular cyl-
inder in an infinite fluid medium was previously cal-
culated by Kuehn and Goldstein [14], and Farouk
and Guceri [15]. They justifiably thought that on the
far boundary the fluid either enters or leaves the
domain radially ; on the outflow boundary, the tem-
perature of the leaving fluid satisfies a Neumann con-
dition. Then, on the inflow boundary

on the wall

Y, =0, =¢=0 where0<f<p )
and on the outflow boundary
V,=(,=¢,=0 wherep<0<n. (6)

For good accuracy, the pseudo far boundary of the
finite computational domain should be located as far
from the body as possible. Through extensive test
calculations, we found that the circular pseudo far
boundary located at a distance 8L or more from the
centre of the body is sufficient, causing virtually no
change to the solution near the body.

The demarcation between the inflow and the out-
flow on the pseudo far boundary can be determined by
observing the interferograms. The outflow boundary
should be chosen large enough to cover the buoyant
thermal plume region. It is found that the numerical
solution is rather insensitive to the change of the
demarcation as long as the rising plume is properly
treated by the outflow condition. We fixed the demar-
cation at p = 0.7x for all the calculations made in the
present paper.

Method of solution

It is important that the coordinate system conforms
to the boundary shape of the flow region. In this
paper, mapping of the flow domain (Fig. 2) is carried
out by a general clustered curvilinear coordinate
system, patterned after Steger and Sorenson [16].
Application of this kind of general body-fitted coor-
dinate has not been frequently made in the heat trans-
fer area. One exception is a melting problem con-
sidered by Rieger et al. [17, 18].

The boundary-fitted coordinate system is generated
numerically by solving a system of elliptic equations

Vix=0, V=0 @)

with Dirichlet boundary conditions. The transformed
Laplace operator contains coordinate control func-
tions P and Q, which can influence the structure of
the grid if properly chosen
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V? = {00z — 2Bz, +70,,+ T (PO +Q0,)} T (8)
where

zx=x,f+y,f, y=x§'+y¢2

B = XXy Ve Yy S = XYy — X, Ve

It is known that the accuracy of computation is
improved in association with applying the boundary
conditions, if near-orthogonality of the coordinates
is maintained around the boundary in the general
coordinate system. Here, the source terms P and Q
were determined by enforcing the orthogonality con-
dition at the boundary points and by assigning the
minimum grid distance from the body. For more
information see ref. [16].

The given set of governing equations (1)—(3) as well
as the boundary conditions are accordingly trans-
formed. It is noted that the unsteady terms included
in the present formulation permit the powerful alter-
nating direction implicit (ADI) computation, later.
The results are

L+LY = PrV*+RaPr¢ 9)
Viy = —¢ (10
G LV =V¢. (11)

The boundary conditions are transformed as follows:

y=(=0, M$p=0  on the symmetry line

on the wall

é=1

My=M{=4=0
My =M =Mp=0

on the inflow region

on the outflow region.

(12)

The transformed vorticity transport equation and the
energy equation are solved by the ADI technique.
For the stream function equation the successive over-
relaxation (SOR) method is appropriate. All the
derivatives with respect to and including the con-
vection terms, are approximated by the central differ-
ence schemes. Convergence was achieved with the cri-
terion |B"*!—B"|/|B"*!| < &. The value of ¢ taken
for the convergence was 0.001 for both the vorticity
(B = ¢) and the temperature, and 0.01 for the stream
function.

Results

Numerical solutions are obtained for the two sharp-
edged models so that the effect of geometry on the
flow separation can be identified. The Prandt! number
is fixed at 0.7 throughout the numerical study, while
the Rayleigh number is changed to several selected
values in the laminar convection regime.

The grid systems used for calculation are shown
near the body in Fig. 3. The grid distance is made
smallest near the heated surface and is gradually
expanded in the outer region. For a flat plate and a
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square bar in the computational domain (&, 9) 51 x 81
and 54 x 81 grid points were used, respectively.

Figure 4 shows representative temperature and
stream function contours for a flat plate at
Ra = 5x 10°, Flow patterns remain very similar for
various Rayleigh numbers from 10 to 10°. The iso-
therms are dense near the surface and formation of
the thermal boundary layer and the buoyant plume is
evident, convecting heat away from the body.

The flow did not separate during the 180 -turn
around the sharp edges. The self-closed streamlines in
the flow field, which are indisputable evidence of a
separated flow, were not computed above the upper
surface in Fig. 4. In contrast, Miyamoto et al.’s cal-
culation [12] showed a small separation bubble on the
upper surface of a horizontal plate near the sharp

edges at Ra = 6.48 x 10° and for Pr = 0.72. They sug-
gested that this separation bubble caused instability
and induced flow asymmetry above the flat plate. In
our numerical calculation, however. the separation
bubble which had appeared during the time marching
process finally vanished as the solution converged (o
the steady state.

Distribution of the local Nusselt number scaled
by Ra'* is plotted for the flat plate in Fig, 5 for
three different Rayleigh numbers. The heat transfer
coefficient has a peak near the sharp edgeand its value
at the centre of the plate is greater on the lower surface
than on the upper one. Experimental study of a flat
plate heated on the downward-facing surface was per-
formed by Athara ef al. {19]. Restrepo and Glicksman
[201 experimentally studied natural convection from
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FiG. 3. Grid systems near a flat plate {(a) and a square bar (b}.
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F1G. 4. Isotherms and streamlines for a flat plate (Ra = 5x 10%).

a finite horizontal square plate heated again on the
downward face in air. These results are also plotted
in Fig. 5.

Figures 6(a)—(c) show the contour lines of constant
temperature and constant stream function for a
square bar at increasing Rayleigh numbers. Because
of the alignment of the buoyancy force with the body
surface, the convective flow gains more momentum
along the vertical surface than along the horizontal
one. The isotherms around a horizontal square bar at
Ra = 10° presented in Fig. 6(a) are globally similar to
those from a circular cylinder {14]. At higher Rayleigh
numbers, the thermal boundary layer around the
square bar and the buoyant plume become more dis-
tinctive as observed from Figs. 6(b) and (c). As the
flow accelerated by the heated vertical surface reaches
the end of the surface, it cannot make a sudden turn
at the sharp edges where the wall curvature is infinite,
resulting in a flow separation. However, in the case of
insufficient flow acceleration, separation of flow is not
assured at the sharp edges. The less heated flow at
Ra = 10° in Fig. 6(a), the attached boundary layer
flows around the lower sharp edges at high Rayleigh
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F1G. 5. Local Nusselt number distributions for a flat plate.

numbers in Figs. 6(b) and (c), and the flow around a
horizontal flat plate in Fig. 4 are examples. In Fig.
6(b), the separated flow region above the upper sur-
face causes a little dent on the innermost isothermal
line. As the Rayleigh number is increased to 1.53 x 10°,
Fig. 6(c), a characteristic finger print appears in the
pattern of isotherms, and the separated flow turns
into active twin vortices. The depressed isotherms in
the separated flow region resemble an ice-cream
scoop, with temperature inversion in the circum-
ferential direction.

Local Nusselt number is plotted in Fig. 7 for a
square bar with the Rayleigh number as a parameter.
As the Rayleigh number is increased, near-similarity
is obtained along the vertical surface. In contrast, this
similarity is lost along the horizontal surfaces. Both
when the separated flow does not exist and when the
strength of the twin vortices generated by the flow
separation is weak, the local Nusselt number decreases
monotonously with the horizontal distance from the
upper sharp edge. However, with strong twin vortices
above the cylinder the local Nusselt number has a local
peak at the centre of the upper horizontal surface.
It is due to the downwash in the region near the
symmetry line caused by the counter-rotating twin
vortices. Having released its thermal energy by con-
duction to the external fluid during the vortical
motion, the flow in the downwash is at relatively low
temperature.

The local Nusselt number distribution along the
wall is shown for Ra = 3.56 x 10° in Fig. 8. Previous
experimental results obtained at Gr = 5.72x 10° in
air by Eckert and Soehngen [21] are shown by
squares. Miyamoto et al.’s numerical result is also
plotted [12], although their calculation was done at
Ra = 1.94 x 10* and Pr = 0.72. It is noted that all the
results have the same trend qualitatively. Particularly,
the present numerical results are observed to be in
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good agreement with the previous experiment by
Eckert and Sochngen [21].

For the flow past a circular cylinder, the flow
remains attached to the body for a Reynolds number
less than 5. In the Reynolds number range from S to
40, the flow pattern allows stationary twin vortices
in the separated region behind the cylinder. For a
Reynolds number greater than 40, the flow finally
becomes unsteady and shedding of the vortices occurs
in an alternating form [22]. In contrast, the separated
natural convection above a square bar retains station-
ary twin vortices even for relatively large Rayleigh
numbers. The height of the closed streamline region
above a square bar is shown in Fig. 9. It is unlikely,
however, these twin vortices break in a shedded form
without first introducing flow instability and tran-
sition to turbulence when the Rayleigh number is
further elevated.

EXPERIMENTAL STUDY

Apparatus

A test model shown in Fig. 10, designed to operate
in air at atmospheric pressure, was built for a Mach—
Zehnder interferometer of 20 cm mirror size. The
model was housed in a relatively large acryl chamber,
where a pair of quartz windows were installed on the
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Eckert & Soehngen {211
Miyamoto gt al. [12)
Present (Ra=3.56x10%)
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F1G. 8. Local Nusselt number for a square bar.
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chamber wall for the beam path. A 10 mW He-Ne
laser was used as a light source. The assembled appar-
atus was then sufficiently free from environmental air
disturbances.

Two different test models were manufactured from
welded square copper pipes by machining their outer
surfaces. One square bar had external dimensions of
243x2.43%x30.10 cm with a wall thickness of
0.31 cm, and the other had external dimensions of
3.90x3.90 x 25.02 cm. The first model was used for
relatively low Rayleigh numbers and the second for
Rayleigh numbers larger than 1.02 x 10°, The cylinder
was heated internally by a coiled 20 Q electrical resist-
ance wire with conductive substances such as iron and
magnesium powder packed in the rest of the inner
space. End insulators made of polystyrene square
plates were installed at the ends of the square bar. In
order to attain uniformity of the surface temperature,
iron and magnesium powders mixed in different ratios
in different azimuthal directions were used. To check
longitudinal temperature uniformity, five thermo-
couples were installed on the upper surface; the
circumferential uniformity was monitored by the four
thermocouples, installed one on each side at three
different cross-sections. An individual thermocouple
was calibrated to an accuracy of 0.1°C. The maximum
deviation from uniformity was 0.5% in the azimuthal
direction and 0.4% in the longitudinal.

In the finite-sized test chamber where thermal strati-
fication may cause an unfavorable effect on the con-
vection, some special treatment was required. Because
each fringe number in the interferogram indicated a
3°C temperature increment in the 25 cm optical path,
a slight thermal stratification would disturb the fringe
pattern noticeably. The problem was overcome by
curtailing the transition time until a steady state was
reached, by imposing a large heating rate initially. By
this procedure the maximum thermal stratification
was reduced 1o 0.007°C cm ™' at worst,

Procedure

The operational principle of a Mach~Zehnder inter-
ferometer was described by Hauf and Grigull [23].
The input power was supplied by a HP 6255A dual
d.c. power supply. All the data were cither stored on
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FiG. 10. Experimental test model: A, heater; B, iron and magnesium powders; C., copper pipe;
D, thermocouple; E, polystyrene ; F, vellow pine wood.
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FiG. 11, Interferograms for a square bar: (8) Ra = 1.95 x 10%, Pr = 0.704; (b) Ra = 3.56 x 10*, Pr = 0.696 ;
(©) Ra=1.53x10°, Pr=0.700.

a cassette tape or printed using a Commodore 2001
series PET micro-computer and a HP 3465A digital
multimeter. The analogue signal from the thermo-
couples, the voltage and the current of the power
supply were automatically recorded at every 10 min
intervals. All photographs were taken on ASA 100
Neopan SS fine grain panchromatic film using a
Nikon F-3 camera. The total running time was about
2-3 h.

The overall heat transfer was determined either
from the real input power or from the interferograms.
The two had a discrepancy and a compensation was
necessary : the thermal radiation loss was approxi-
mately determined 'by using the Stefan—Boltzmann
equation. This generally was larger than the estimated
two-dimensional heat loss due to the end effect.

Results

The interferograms are presented in Figs. 11(a)—(c)
for three different Rayleigh numbers. The fringes can
be considered as isotherms since the index of refrac-
tion is a function of temperature only in natural con-
vection. The air properties at the mean of the two
temperatures T, and T, were used here to evaluate

the Rayleigh number, the Prandtl number and the
Nusselt number.

InFig. 11(a) at Ra = 1.95 x 10% the largest distance
between isotherms or the smallest temperature gradi-
ent occur along the upper symmetric line. In natural
convection, when there are two or more counter-
streamings in a confined area, it is common that the
curvature of the isotherms change their sign and the
isotherms are bulged in the flow direction, which usu-
ally cause the phenomenon of temperature inversion.
In Fig. 11(b) at Ra = 3.56 x 10% it is observed that
even for an external convection the isotherms near the
body are slightly depressed toward the wall in the
upper symmetry region. The central compression of
the isotherms is even more amplified, even to the
form of the earlier ice-cream scoop, in Fig. 11(c) for
Ra = 1.53 x 10°. This phenomenon suggests that there
is evidently a downwash in the convective stream over
the upper horizontal surface near the symmetric line.
Recall that it has been shown from the earlier com-
putational results, Fig. 6, that the compression or even
the flatness of the isotherms in this region is directly
related to the separated flow appearing in the form of
counter-rotating twin vortices.
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Experimental Numerical
Ra 9.7x10¢ 1.02x10°
Pr 0.709 0.7

In Fig. 12, direct comparison of the isotherms from
the present experiment (left} and the computation
{right} is presented. The seven isotherms well matched
below the bottom of the cylinder do not perfectly
coincide above the upper surface. Nevertheless, the
overall agreement in the qualitative trend is indis-
putable. The readers are referred here back to Fig. 8
where the computational local Nusselt number was
quantitatively well compared with the heat flux
measurement of Eckert and Soehngen [21].

The average heat transfer coefficient obtained from
the experiment and the computation is given in Fig.
13. The agreement is reasonable in the range
1.95 x 10* < Ra < 10°. For a higher Rayleigh number

range, however, the large radiational energy loss and
the end wall effect could probably be blamed for the
deviation of the data. For a Rayleigh number lower
than 1.95 x 10% the size of the test model had to be
reduced and a reduced temperature scale used. The
insufficient number of fringes in the interferogram in
this case made the present experimental results very
unreliable and the idea of extracting any usefu! infor-
mation from the interferometry had to be abandoned.
For a two-dimensional square bar, King’s correlation
[24] can be rewritten as

Nut = 0.357RaV/* (a3

by using the side length of the bar as a characteristic
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FiG. 13. Average Nusselt number for a flat plate and a square bar.

length. From the experimental data in the present
study, the average Nusselt number can be correlated
by least-square regression analysis in the range
I < Ra<2x 1 as

Nu = 0.856Ra™'"7. (14)

If one prefers to fit the data in one-fourth power law,
the correlation would become

(15}

SUMMARY AND CONCLUSIONS

Solution to the Navier-Stokes and energy equa-
tions has been obtained for the natural convection
heat transfer from a horizontal, isothermal, sharp-
edged obiject such as a flat plate or a square bar. Some
of these convections have also been experimentally
studied. The flow patiern around a flat plate shows
no flow separation at the sharp edges in the Rayleigh
pumber range considered. Similarly, it has been shown
for a square bar that the strong thermohydraulic inter-
ference between the adjacent walls causes the thermal
boundary layer to follow closely the body con-
figuration with no premature flow separation, if the
Rayleigh number is sufficiently low of the order of
10°. In contrast, it has been disclosed that for higher
Rayleigh numbers a separated flow pattern is possible
above the upper horizontal surface of a square bar,
The temperature imversion in the circumferential
direction, which is the consequence of the active twin
vortices, is found when the Rayleigh number becomes
of the order of 10°. The separated flow was maintained
in a closed bubble form to the highest Rayleigh num-
ber calculated, without any indication of bursting.
The local and average Nusselt numbers are obtained.
It is found that the flow separation causes the local
heat transfer to increase on the upper horizontal sur-
face of a square cylinder, but not the overall heat
transfer. Comparison between the numerical and the
experimental results has demonstrated good agrec-
ment overall.
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CONVECTION NATURELLE THERMIQUE LAMINAIRE AUTOUR DE BARRES
HORIZONTALES A ARETES BRUSQUES AVEC ECOULEMENT DE SEPARATION

Résumé—La convection naturelle laminaire autour d’une barre horizontale 4 arétes brusques, placée dans
un fluide infini, a été étudiée numériquement et expérimentalement. Des solutions aux différences finies
pour les équations bidimensionnelles de Navier—Stokes et de Iénergie sont obtenues pour deux con-
figurations avec le nombre de Prandtl 0,7: une plaque plane d’épaisseur finie et une barre carrée. La
difficulté associée au domaine complexe physique de I'écoulement ¢st surmontée en utilisant des coor-
données adaptées. Dans I'étude numérique on ne trouve pas l'indication d’un écoulement avec séparation
pour la plague plane, dans le domaine de nombre de Rayleigh 10° < Ra < 10°. Pour la barre carrée, la
couche limite se sépare aisément aux coins supérieurs pour Ra > 5-10° et deux tourbillons jumeaux bien
définis sont identifiés au dessus de la surface supérieure horizontale. Une étude interférométrique Mach—
Zehnder est développée dans Pair pour déterminer les distributions de température et du nombre de
Nusselt dans le domaine de nombre de Rayleigh 1,95+ 10* < Ra < 1,53 10°. La comparaison des résultats
numériques et expérimentaux conduit & un bon accord.

WARMEUBERGANG BEI LAMINARER I\_[ATURLICHER KONVEKTION AN
SCHARFKANTIGEN WAAGERECHTEN STABEN MIT STROMUNGSABLOSUNG

Zusammenfassung—Die laminare natiirliche Konvektion an einem scharfkantigen waagerechten Stab im
unendlichen Fluid wurde numerisch und experimentell untersucht. Losungen der zweidimensionalen
Navier-Stokes-Gleichungen wurden mit Hilfe finiter Differenzen fiir eine Prandtl-Zahl von 0,7 fiir den Fall
einer ebenen Platte endlicher Dicke und fiir einen quadratischen Stab ermittelt. Probleme, die sich aus dem
komplizierten Strémungsfeld ergaben, wurden durch dem Kérper angepaBte Koordinaten gelost. Aus der
numerischen Untersuchung ergab sich fiir die waagerechte Platte kein Hinweis fiir eine Strdmungsablésung,
solange die Rayleigh-Zahl zwischen 10° und 10° liegt. Beim quadratischen Stab jedoch 1dste sich die
Grenzschicht an den oberen scharfen Kanten bei Ra > 5- 10° ab, und es waren paarweise Wirbel oberhalb
der waagerechten Oberfliche zu erkennen. Parallel dazu wurden Messungen mit einem Mach-Zehnder-
Interferometer an einem quadratischen Stab in Luft durchgefiihrt, um die értliche Verteilung von Tem-
peratur und Nusselt-Zahl fiir Rayleigh-Zahlen zwischen 1,95 - 10* und 1,53 - 10° zu ermitteln. Der Vergleich
zwischen experimentellen und theoretischen Ergebnissen ergab gute Ubereinstimmung.

JJAMHUHAPHBI ECTECTBEHHOKOHBEKTHUBHBIY TEIUJIOMIEPEHOC OT
TOPU3OHTAJIBHBIX BPYCBEB C OCTPOII KPOMKOII B VCIIOBUSIX OTPbIBA
TEYEHHWA

AmHoTamus—YHCICHHO H SKCNIEPHMEHTAJIBHO HCCIENYeTCA NAMHMHAPHAS ¢CTECTBEHHAS KOHBEKIHA Han
TOPH3OHTAJILHEIM 6pYCKOM ¢ OCTpPO# KPOMKOM, MOMEIIEHHEIM B HEOrDAHHYEHHBI 00beM XHOKOCTH.
Pemtenne psymepunix ypasuenn# Hasbe-CTOEca W HEPIrM# MONYYEHB! MCTOAOM KOHCUHBIX pasHOCTei
opH 3aganaoM wucie [pangras 0,7 s AByX xondmrypaunit: IOCKas IVIACTHHA KOHEYHON TOMIMHS H
6pycok KeaapaTHOro ceueHms. Mcnons3opaHMe KOODZMHAT C Ha%ajioM B IEHTPE HCCIEAYSMOrO Tena
YCTPaHSAeT TPYAHOCTH, CBA3AHHBIC ¢ (PHIHYECKA COXHBIMH YCIOBMAMH TeueHns. IIpu wucresnoM Hecae-
IOBaHHH He OOHAPYXECHO OTPHIBA TCUCHHS IUIA CHy4as IUTOCKOH ILIACTHHM B AHana3oHe umcen Panes
10 < Ra < 10*. Omnako B caydae 6pycka KBaJpaTHOrO CEMCHHS NOTPAHMYHELN CIIOK NErKo oTpeIBaeTCa
Ha BEPXHHX OCTPHIX KPOMKAX IpM Re > 5-10° M Hal BepXHelt rOPHIOHTAIBHOH IOBEPXHOCTHIO
NOABIAIOTCH YETKO BHIpaXeHHbIe Asoiinbie Buxpy. C nomonisio uuTepdepomerpa Maxa-Ilensepa npo-
BEMICHBI HCCIEIOBAHNS HA BO3OyXe UM OpycKa KBaIpPaTHOrO CEYCHNS, A3 KOTOPHIX HalleHn pacnpenete-
HHA JOKAJIBHBIX TeMIepaTypsl # wucesi Hyccenbra B maanasone yucen Panes 1,95-10° < Ra < 1,53 - 10°,
CpapHen#e YHCACHHBIX H IKCHCPHMEHTANHBIX PE3YAbTaTOB NOKA3aJI0 NX XOPOUIEe COTJIACHE.



